
ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-4900/5900: Special Topics – High-Performance Embedded Programming Fall 2021

 1 Instructor: Daniel Llamocca

Laboratory 6
(Due date: Nov. 8th)

OBJECTIVES
▪ Compile and execute C++ code using the TBB library in Ubuntu 12.04.4 using the Terasic DE2i-150 Development Kit.

▪ Execute applications using TBB: parallel_for and parallel_reduce (reducing group of arrays into an array)

▪ Implement image histogram with TBB.

REFERENCE MATERIAL

▪ Refer to the board website or the Tutorial: Embedded Intel for User Manuals and Guides.

▪ Refer to the Tutorial: High-Performance Embedded Programming with the Intel® AtomTM platform → Tutorial 6 for associated

examples.

ACTIVITIES

FIRST ACTIVITY: IMAGE HISTOGRAM COMPUTATION (100/100)

▪ Given a grayscale image 𝐼 of nrows by ncols, we want to get the histogram of 𝐼, represented by the vector ℎ⃗ (of size nb)

✓ We use nb=256 bins in this exercise. Fig. 1 depicts an example.

▪ Serial approach: n = nrowsncols.

✓ Image 𝐼: represented as a n-element vector (image stored in a raster scan fashion).

Naïve serial approach Optimized serial implementation
for i = 0:255

 for j = 0:n-1

 if i = I[j]

 h[i] h[i]+1

 end

 end

end

for j = 0:n-1

 h[I[j]] h[I[j]]+1

end

✓ It is very clear that the optimized serial implementation should be used.

Figure 1. (a) Grayscale image of 1600x1200. (b) Histogram with 256 bins.

n
ro

w
s

=
16

00

ncols = 1200

(a) (b)

https://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&CategoryNo=11&No=529
https://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&CategoryNo=11&No=529
http://www.secs.oakland.edu/~llamocca/emb_intel.html
http://www.secs.oakland.edu/~llamocca/emb_intel.html

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-4900/5900: Special Topics – High-Performance Embedded Programming Fall 2021

 2 Instructor: Daniel Llamocca

▪ Parallel approach:
✓ It seems that we can attempt to use the optimized serial implementation in parallel, so that h[I[j]] can be updated by

multiple threads. Here, parallel_for can be used with the iteration space [0,n-1]. Example:

parallel_for(blocked_range<int>(0,n), [&] blocked_range<int> r) {

 for (int j = r.begin(); j!= r.end(); ++j)

 h[I[j]] = h[I[j]]+1;

}

 However, there is a possibility that two or more threads update h[I[j] at the same time, causing a race condition.

✓ A safe parallel implementation would look like this:

 Divide the array 𝐼 into nt groups (e.g.: nt = 4).

 For each group, generate a histogram, called partial histogram hp[i], i=0:nt-1. Note that hp has nb=256 elements.

 Here, you use parallel_for with iteration space [0,nt-1]

 Once the partial histograms are ready, add up all these vectors onto a vector ℎ⃗ (of size nb=256).

 Here, you use parallel_reduce to generate the resulting 256-element vector.

INSTRUCTIONS
▪ Write a .cpp program that reads a binary input file (.bif), computes the histogram, and stores the result (256 values) in a

binary output file (.bof).

✓ Your code should be parallelized via TBB parallel_for and parallel_reduce as per the approach illustrated in Fig. 2.

✓ Your program should read in a parameter nt (number of groups in which the input image is being partitioned).

▪ Considerations:

✓ Input matrix: Read from an input binary file (.bif). You can use the provided puppet.bif file that represents the

16001200 input image in Fig. 1(a). Each element is an unsigned 8-bit number (or uint8).

 You can use the function read_binfile from Laboratory 3 to read data the image data (stored as a 1D array in a

raster-scan fashion) (use typ=0 since each element is of type uint8).

 You can also use the read image function available in Tutorial #2 (for image convolution).

✓ Output histogram: Elements are of type int (32-bit signed integer), also referred as int32.

 To store the int output array in a .bof file, you can use write image code available in Tutorial #2.

▪ Output array verification: You need to verify the generated .bof file. You can do this via the lab6.m script.

✓ Once you place the .bof file (puppet.bof) in the same folder as the script, run the script. The script will display the

input image.
✓ When prompted to select an option, choose option ‘2’. This will compute the histogram and display it.
✓ Then, when prompted to select an option, choose option ‘3’. Here, the MATLAB® script will read the puppet.bof file,

plot the histogram generated by your C++ code (save this file as a .jpeg), and display the sum of differences between
the MATLAB and C++-generated histograms. The result should be 0.

▪ Compile the code and execute the application on the DE2i-150 Board. Complete Table I (use an average of 10 executions in

order to get the computation time for each case).
✓ Example: ./lab6 4

 It will compute the application using nt = 4.

hp[3]

I

...
nb=256

hp[0] ...hp[1] ...hp[2] ...
nb=256 nb=256 nb=256

n

h
...

nb=256

Reduction

Map

n/nt

Figure 2. Safe parallel implementation of histogram computation. nt = 4

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-4900/5900: Special Topics – High-Performance Embedded Programming Fall 2021

 3 Instructor: Daniel Llamocca

▪ Take a screenshot of the software running in the Terminal for nt=4. It should show the output histogram values (try to print

out as many as you can on the screen) and the processing time.
✓ Your code should measure the computation time (only the actual computation portion) in us.

▪ Provided files: lab6.m, puppet.jpg, puppet.bif.

TABLE I. COMPUTATION TIME (US) – PARALLEL IMPLEMENTATION WITH TBB PARALLEL_FOR AND PARALLEL_REDUCE

nt Computation Time (us)

4

10

20

50

100

SUBMISSION
▪ Demonstration: In this Lab 6, the requested screenshot of the software routine running in the Terminal suffices.

✓ If you prefer, you can request a virtual session (Zoom) with the instructor and demo it (using a camera).

▪ Submit to Moodle (an assignment will be created):

✓ One .zip file:
 1st Activity: The .zip file must contain the source files (.cpp, .h, Makefile), the requested screenshot, and the

plotted histogram (values generated by your C++ code) as a .jpeg file.
✓ The lab sheet (a PDF file) with the completed Table I.

TA signature: __________________________________ Date: ______________________________

